
Analysis of Continuous Glucose Monitoring

Yale-NUS College Special Project in Science

Hrishi Olickel
Yale-NUS College
hrishi.olickel@u.yale-nus.edu.sg

Hebe Hilhorst
Yale-NUS College
hebe.hilhorst@u.yale-nus.edu.sg



Abstract

In this work, we investigate current methods for Continuous Glucose Monitoring
and their accuracy, in order to develop a framework for better reporting and data
collection as well as prediction. Additional investigation is done into the use of
Blood or Interstitial Glucose as a predictor of general health.
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1Background

Diabetes means that a patient must manually control their glucose levels. Glucose
levels outside of normal levels, typically considered 4.0 mmol/L to 8.0 mmol/L
pose a significant danger. Being below optimal - hypoglycaemia - can cause un-
consciousness and lasting brain damage within minutes. Being above optimal -
hyperglycaemia - can cause fatigue, thirst, headaches, etc in the short term. In the
long term, it is very problematic and can lead to nerve damage and many chronic
health issues such as nerve damage, blindness, and heart disease.

1.1 History

While it has other applications, glucose measurement technology has always been
driven by diabetes treatment and care. Diabetics need glucose measurements in
order to inform immediate management, to analyze historical trends for future
changes in care, and as a performance metric to measure whether they’ve met their
goals. For the performance metric, glycated haemoglobin (HbA1c) measurements
are most commonly used. This provides a rough average of glucose over the past
three months. Everyday management, however, requires a user-friendly system that
provides a good idea of the current location and behaviour of blood glucose.

Accurate glucose measurement is a key aspect of diabetes control, and has been
developed for that purpose over the past century or so. Initially, it was measured
through urine. This was a very crude method with poor accuracy and a significant
time lag, so capillary blood glucose measurement took over in the form of fingerprick
tests. While significantly more timely and accurate, these are uncomfortable and
only provide a snapshot view. Subcutaneous Continuous Glucose Monitors, or CGMs,
have been developed over the past decade to provide a semi-continuous (typically
every 15 minutes) reading of interstitial fluid glucose levels. More systems have
been sporadically developed, such as GlucoWatch, near infrared spectroscopy, and
microdialysis. However, these have all fizzled out, usually because of issues with
inaccuracy or user discomfort. Venous blood plasma is still in use, but due to the
obvious impracticalities this is typically limited to hospital inpatients. This leaves
capillary blood glucose spot checks and semi-continuous interstitial fluid monitoring
as the current existing technology.

1



Capillary blood glucose is considered the clinical gold standard. It’s easy to self-
administer and quick to display changes in glucose level, making it the most respon-
sive and up-to-date for patient management. Mostly, however, it has simply long
been the only option. That means decades of medical practices have been developed
using it for reference, so modern clinical care and diabetes management respond to
venous blood information. It’s been institutionalized in.

Fig. 1.1: Illustration of a CGM sensor.

State-of-the-art ground truth measurement for glucose levels is typically ascribed to
the Yellow Springs Instrument Glucose Analyzer, which measures venous plasma,
but day to day use is handled through handheld Blood Glucose Meters (BGMs).
Although accepted as ground truth in many studies, these are far from perfect. The
accepted Diabetes Technology Society standard is that a BGM must be accurate
to within 15% at least 95% of the time, and within 20% at least 99% of the time,
compared to YSI readings [Noaf]. Many meters do not meet this standard1. Another
popular assessment for BGMs is Clarke Error Grid Analysis (EGA). This is intended
to measure clinical accuracy, or the likelihood that a glucose reading will provoke a
detrimental management decision, and is equally important.

Over the past half decade, CGMs have been working their way into common practice.
For immediate management, they give both an instantaneous spot check and an idea
of current glucose behaviour, which is very helpful for tailoring action. On top of this,
they also give semi-continuous historical data that can be used to get a better idea
of glucose response to various environmental variables, which helps significantly in
perfecting management. Analysis of this historical record can also lead to a more
high definition performance metric.

Although CGMs directly measure interstitial fluid, their accuracy is judged by how
close they are to blood glucose readings - officially to YSI, but most studies use BGM
readings as an acceptable ground truth. A CGM accuracy will typically be reported
as how close the spot checks are to a corresponding BGM reading. Although CGMs
also give trend data, performance metrics for this are still being developed within

1A formal study on accuracy is [Cla+87], more recent informal studies are [Sch],[Noad],[Ede13].
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the community. When it comes to clinical accuracy, the basic EGA is often used.
However, Continuous Glucose Error Grid Analysis (CG-EGA) is in the late stage of
development to judge the clinical accuracy of CGMs based on the wider range of
information they provide.

BGM capillary blood glucose is the accepted treatment basis for glucose management,
because it’s the most reactive metric and already embedded in diabetes care. All
other systems, regardless of how they sample glucose, strive to match it. However,
continuous monitoring also provides a wealth of other useful information relevant
to both diabetics and others.

1.2 Sensor Choice

Among the many commercially available sensors, we used Abbott’s Freestyle Libre.
Among other reasons, it was the only one we could use. DexCom is not available
in Singapore, and Medtronic only displays to an insulin pump. Being based in
Singapore without an insulin pump, Abbott was the only option. It is not strictly
speaking a CGM, since it doesn’t broadcast the results, which must be manually
checked. Since that’s the only difference, for ease of reference it’s typically included
under the umbrella term anyway.

Fig. 1.2: The Nightscout ecosystem.

The Freestyle Libre has several other advantages. It is the cheapest and longest lived
sensor available, with appreciable accuracy in all papers. The website is easily the
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most user-friendly, which is far more beneficial than it sounds. Most relevant to
our purposes, it has the largest hacker community already formed. In particular,
protocols and proof-of-concept software had been developed for accessing values
straight from the sensor, and as we later found out, from the reader. Achieving
something similar with DexCom apparently requires soldering together a xDrip
device from scratch and online instructions. Data sent from sensor to display can be
captured from both DexCom and Medtronic, with associated GitHub repositories.
However, it’s more complicated and not intended for personal data analysis, being
part of the bigger Nightscout[Noam] project, which aims to provide a complete
framework for managing glucose information.

1.3 Freestyle Libre

The Freestyle Libre CGM2 consists of a subcutaneously implanted sensor and hand-
held reader. Interstitial fluid readings are taken every 60 seconds, by the method
described in detail below. The sensor records these raw values. Scanning the sensor
with the reader automatically transmits the stored data through NFC. The reader
then processes the raw data and displays a current glucose value, 8hr historical trend
line, and an arrow indicating trend direction.

Studies have shown [Abb] that using continuous glucose monitors (the Freestyle
Libre in particular) have resulted in a 16%reduction in HbA1c levels, as well as
significantly lower occurrence and duration of hypoglycemic episodes. This is an
extraordinarily positive result that lowers both short and long term risks due to
diabetes complications by a significant margin.

2It must be noted that the FreeStyle Libre is officially classified as a Flash Glucose Monitor (FGM), in
that it does not alert the user directly, requiring a scan to do so. However, for the purposes of this
report and the framework being built, we will use the terms CGM and FGM interchangeably.
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2Technical Analysis

2.1 Event Analysis and Review

The FreeStyle Libre sensor takes readings every 60 seconds, but it does not retain all
of these, because of what we presume are storage limitations. Instead, it keeps half
an hour of high definition data (30 values separated by 60 seconds) and an additional
7.5 hrs of coarse 15 minute data (45 values separated 15 min), disregarding the
rest. The sensor also contains a power source, for both the electronics and the
measurement mechanism, and a thermometer. When scanned, the sensor provides
the stored data (30min fine, 7.5hr coarse), associated internal time, and uncalibrated
temperature information. This information was gained during data analysis, as
discussed later.

The sensor provides a series of raw, unsmoothed datapoints at a lag from ground
truth, which the reader aims to transform into clinically useful information. Their
precise algorithm is appropriately a trade secret, but provides transformed historical
data, point estimate, and trend. Sometimes it will refuse to display any data, typically
if glucose levels are changing very rapidly. Since the company provided accuracy
study uses industry-standard Yellow Springs Instrument levels as ground truth, the
provided data can safely be assumed to be intended to represent venous blood
glucose. Their user manual also provides a chart for interpreting the glucose trend
arrow, as shown in Figure 2.11.

We found that the reader point estimate provides greater mathematical accuracy
to blood glucose than the associated raw sensor value. The historical trend line is
displayed in too low a resolution for much accuracy discussion, but as discussed
later, more accurate data can be gained. The trend arrow will be discussed more in
depth in future. Of course, clinical accuracy must also be considered.

As well as processing and displaying the raw data, the reader provides several extra
capabilities. It allows users to set date, time and target glucose range. With each
scan, it also allows the user to add flags to record extra events such as insulin, food,
medication and exercise. Flags for other events can be added using the software.
Historical records can be viewed as well as limited analytics such as weekly averages,

1from the FreeStyle Libre manual supplied with the sensor.
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Fig. 2.1: Conditions where arrows are displayed.

time in range, and typical daily trend. The reader can also act as an independent
blood glucose or ketone meter.

2.2 Sensor Chemistry

The technology underlying most commercially available continuous glucose monitors
is the same. They are inserted subcutaneously, typically into the arm or stomach.
They consist of an implanted, flexible catheter connected to the external plastic
shell, which is typically attached to the skin with adhesive. The catheter acts as
an amperometric biosensor and takes a raw measurement of interstitial glucose.
The external hardware provides power, keeps time, records the measurements, and
is sometimes attached to an optional transmitter. Currently, there are three main
commercial brands; DexCom, Medtronic, and Abbott.

2.2.1 Amperometric Glucose Biosensors

An amperometric glucose biosensor uses redox electrodes to create and measure a
current proportional to interstitial glucose concentration. From the current, they
can closely estimate the actual glucose concentration. If there’s too much noise
for the current and concentration to have a constant ratio, the device will require
regular recalibration by matching with blood glucose tests. Since most CGMs aim to
eliminate the need for BGMs, manufactures aim to reduce noise, while maintaining
sensor lifespan and comfort.
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Fig. 2.2: Location of flavin adenine dinucleotide (FAD) co-factor in glucose oxidase.

In order to produce the proportional current, an amperometric biosensor electro-
oxidizes glucose with the flavin adenine dinucleotide (FAD) co-factor of glucose
oxidase as shown in Equation 2.1, then measures the current provided when re-
oxidizing the reduced glucose oxidase. It is difficult to directly oxidize the FAD
co-factor, since it’s buried deep within the molecule (Figure 2.2), so a mediator
is used. This creates a three step system: oxidize glucose with glucose oxidase,
react with the mediator, then oxidize the reduced mediator. At each of these steps,
the concentration of the products remains proportional to the concentration of
glucose. At the last step, the electro-oxidation of the mediator, the current produced
will also be proportional. The speed of electron movement will be proportional to
the reaction rate, which will be proportional to the reactant (reduced mediator)
concentration[Noac]. This provides an acceptable raw representation for interstitial
fluid glucose concentration. Anything that interferes with any of these proportions
creates noise.

Most often, oxygen is used for the mediator. This results in the chain of reactions
shown in Equations 2.2 and 2.3. Oxygen is a useful mediator, because instead of
needing to be immobilized in on the electrode, it can be taken in vivo. However, the
reactions need a higher ratio of oxygen to glucose that is found in interstitial fluid
to be successful. To overcome this, both Dexcom and Medtronic have developed
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complicated membranes that only allow the desired ratios in - remaining, of course,
in proportion to the global body glucose[Noai]. However, this introduces more
noise. The heavy design requirements for the membrane also mean that it lacks
flexibility to control other noise-inducing factors. This contributes to both those
systems requiring twice-daily calibration.

FAD −GOx + glucose→ FADH2 −GOx + gluconolactone (2.1)

Reduction half-equation: FAD −GOx + 2H+ + 2e +−FADH2 −GOx

Oxidation half-equation: glucose→ gluconolactone + 2H+ + 2e−

FADH2 −GOx + O2 → H2O2 + FAD −GOx (2.2)

Reduction half-equation: O2 + 2H+ + 2e− → H2O2

Oxidation half-equation: FADH2 → FAD −GOx + 2H+ + 2e−

H2O2 → O2 + 2H+ + 2e− (2.3)

Abbott overcame this issue with their trademarked Wired Enzyme technology[Noap].
This uses immobilized osmium complexes as their mediator, resulting in the reactions
shown in Equation 2.4. This has several benefits. It avoids involving several
confounding variables into the equation by removing the need to use internal
oxygen and by oxidizing the glucose oxidase in place, instead of in solution. Most
usefully, re-oxidizing the osmium requires a much lower voltage than doing so for
the oxygen. This avoids interference from other substances, like uric acid or medical
acetaminophen[Noai]. Overall, the Wired Enzyme decreases noise enough that it
need only be calibrated in the factory, since the current to glucose concentration
ratio stays constant[Hos+14]. On the other hand, it means that Abbott devices have
a clear expiration date, since they become completely unusable once they run out of
osmium.

FADH2 −GOx + 2Os3+ → 2Os2+ + FAD −GOx + 2H+ (2.4)

Reduction half-equation: 2Os3+ + 2e− → 2Os2+

Oxidation half-equation: FADH2 → FAD −GOx + 2H+ + 2e−
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Other factors also confound accuracy. Regardless of what mediator a sensor uses, it
has to resolve biofouling. Tissue response to a foreign body injection can mean that
local glucose stops accurately representing global glucose. Companies increasingly
minimize this with improving biocompatible material technology. Another problem
which is yet to be properly solved is tissue inflammation upon injection. This typically
means that initial results will be less accurate, getting more so as the inflammation
goes down.

One environmental variable that hasn’t been properly addressed is temperature.
All amperometric biosensors rely on enzyme reactions, which vary heavily with
temperature[Noab]. Enzyme activity increases alongside temperature, which carries
over throughout the process and hence to the reported glucose values. No mention
can be found of how any CGM controls for this within the sensor hardware, and
it’s difficult to imagine how they could. No mention was found of whether this was
controlled for in software, and anecdotal evidence suggests that the current methods
are ineffective.

CGM sensors record interstitial fluid glucose by using an amperometric biosensor to
measure a current that’s directly proportional to glucose concentration. In order to
make sure that the proportionality remains, companies have put a lot of work into
minimizing chemical and biological interference.
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3Development

Below is the process of developing a glucose monitoring app using the FreeStyle
Libre FGM sensor, which involved reverse engineering the protocol of the Libre, and
developing a system for calibration and conversion of raw sensor and temperature
values into readings. The application also features speed improvements over current
state of the art, and is designed to be open source to function as a platform for
building predictive and analytics tools based on such data, in addition to data
aggregation.

3.1 Architecture

Fig. 3.1: Freestyle Libre sensor and reader in use[Noag].

The sensor used in the Freestyle Libre (hereafter referred to as the sensor for brevity)
is described in multiple patents[Noan], which outline the design and electrochemical
composition of the system. Figure 3.1 shows the scale of the sensor and the reader.
Most relevant here are the ones that describe the sensor chemistry as well as notes
on the encoding patterns. The chemical method being used[Say+00] is described
to vary linearly with temperature as well as the concentration of interstitial fluid
glucose. The raw values thus extracted from the electrode on the sensor are then
stored in a processing unit on the sensor, as underlined by the patent.

A teardown view of the sensor is presented in Figure 3.2, where the processor being
used as well as the internal components can be identified. Glucose measurement,
as previously discussed, is taken via an amperometric biosensor which is primarily
encapsulated within the flexible needle. The sensor apparatus also contains a
thermocouple tape [Noaq] which reacts linearly(within thresholds underlined in
the patent) to temperature. Single-point and dual-point calibration systems are
mentioned, by the use of which the raw sensor glucose information can be calibrated
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Fig. 3.2: External and internal components of the sensor[Ilk14].

to the internal temperature of the sensor. The only visible temperature sensor1 is
on-board the sensor body, taped to the plastic housing on the side of the user’s skin.
This leads us to believe that a single-point calibration is being used, which will be
confirmed later.

The processor (from the product number) is an RF430FRL152H[Noao] 2, which
is used to read and store raw values from the sensor, and communicate them
over a Near-Field Communication(NFC)[Noaj] protocol to the reader apparatus.
Unfortunately there are no accessible debugging points on the circuit board, so most
of the work will need to be done through the wireless protocol on board.

An on-board battery powers the sensor during operation, however, the patent does
not describe any mechanisms for calibrating the voltage drift from the battery
provided DC voltage. This was surprising, and leaves potential room for additional
work on whether this is a factor.

The reader apparatus (Figure 3.3) is unsurprisingly complex, as it incorporates the
mechanism for reading and processing sensor data, USB interfacing components
as well as a blood-glucose test strip reader. The internals are well weatherproofed,
and the construction is remarkably robust. The existence of a number of test pads
(possibly for in-factory calibration and quality control) as well as an unexposed
connector leave future avenues for extracting information from the reader.

1It must be noted that the processor carried an on-board temperature sensor. However, it is unknown
how this is used.

2a member of the MSP430[Noaa] family of low-power microcontrollers by Texas Instruments
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Fig. 3.3: Internal PCB of the reader[Noar].

3.2 Communication Protocol Analysis

The datasheet[Noao] for the on-board processor of the sensor describes use of
the ISO 15692 protocol[Noah], and reading the information using an NFC reader
application on an Android phone confirms it conforms to the Nfc-V[Noal] standard,
which is a distance-limiting version of the ISO protocol. This limits the effective
use of a reader apparatus to a few centimeters[Noak], but also means that all new
Android smartphones with NFC technology will be able to read the sensor with the
same protocol. The manufacturer is listed as Texas Instruments, with 1952 bytes
of memory being transmitted on a full read. Armed with this information, we can
proceed.

3.2.1 Related Work

A number of projects have attempted to use the Freestyle Libre as a Continuous
Glucose Monitor. There have also been a number of attempts to reverse engineer the
protocol being used and to extract the values therein. The most popular (with about
50,000 downloads) of which is the Android application Glimp[Sof17], which reads
the FreeStyle Libre sensor and claims to "calibrate" the sensor using Blood Glucose
readings independently provided by the user. Unfortunately, this project is not open
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source, and the available open source offerings do not go further than reading
raw glucose values without calibration or temperature data, and suffer from long
read-times (exceeding 2 seconds) for the sensor. Users have also reported that the
measurements thus provided are often wrong, and often dangerous - in fact, as one
particular analysis shows, the calibration methods used lead to often fatal predictions
for users[Ve]. The closest project that could be found was the FreeStyleLibre-NFC-
Reader[Bau17] project, which displayed the most recently recorded sensor value3.
Looking at available solutions for working with the FreeStyle Libre system indicated
the dire need for open source projects that aim to improve on intelligent reporting
as well as detailed documentation on internal working.

The accompanying Wiki article was useful in providing the following information:

1. The glucose data being recorded on the sensor is split into 16 measurements
spaced one minute apart and 32 measurements spaced 15 minutes apart.

2. A circular array is used for writing the data (presumably to minimize rewrites
to memory), and the next write position is recorded in the hex before the two
arrays.

3. The numbers are encoded in Little Endian Binary[Noae].

However, the author states that his analysis is purely experimental, and that it fails
on a sensor that is in use for more than 10 days (the labeled use period of the sensor
is 14 days). However, this provides a suitable starting point if we proceed with
caution.

3.3 HEX Analysis

Visual analysis of the tag memory indicates that a large amount of whitespace
remains (Figure 3.4), and comparing to sensor read times for the full tag as opposed
to existing solutions (Glimp, Liapp, etc), we can predict that reading only the
required bits of the sensor will let us speed up this process considerably.

A python program4 to process the resulting XML and convert it to an addressable
array of hex values enables analysis. Considering a differential of consecutive sensor
data dumps, we can see the bytes that differ.

3Small caveat being that the code was largely uncommented and labeled in Spanish.
4processrawNFC.py in source code
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Fig. 3.4: Full hexadecimal and ASCII character dump of sensor tag memory.

Fig. 3.5: Differential of sensor hex dumps, with differing bits highlighted in pink.

Figure 3.5 shows hex dumps collected approximately spaces 1 minute apart, which
confirm and locate the spots where readings are written. From here, we can take
consecutive readings to determine the location of each individual reading, until the
write array returns to the same location.

Once this was completed, research suggested that the written values were a com-
bination of flags, raw glucose data and temperature data. What remained was to
separate them. This proved simple - removing the sensor from it’s position in the
body (after insertion and calibration by the reader) provided consistent glucose
readings of -2.1. Given that this was a constant factor, binary analysis revealed that
the glucose values were encoded in the lower 3 bytes of the reading, and could be
deciphered using Equation 3.1.

Vglucose = Vraw & 0x000FFF
6 − 37 (3.1)
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Next, the glucose information was calibrated using previously collected raw glucose
data from Glimp[Sof17] which could be matched with processed data extracted
from the reader using protocols defined in the open source project Glucometer-
protocols[Pet17]. The raw and calibrated data seemed to possess mostly a first order
aka linear correlation across sensors (Figure 3.6, and the value of intercept and slope
were used to further adjust raw data collected.

Fig. 3.6: Graph of raw sensor vs processed reader glucose values.

Next was the process of extracting and calibrating temperature sensor information.
A simple experimental setup using a multimeter thermocouple taped to the sensor
(which was placed closest to the external thermocouple in Figure 3.2), following
which the apparatus was placed in multiple temperature systems, the average of
which was calculated. Once again, the datasheet [Noao] was helpful in expecting a
linear correlation between temperature and raw values, so a slope, intercept, and a
bitmask for the flags was all that was required.

Graphing the resulting data revealed certain flags being turned on and off, which
combined with the knowledge that a flag change could be removed with a power
of 2, resulted in the bitmask being set at 0x2FFF, applied to the upper three bytes
of the six-byte reading extracted (the same value can be applied to the entire
reading, left shifted). The experimental setup and bitmask evaluation can be found
in Figure 3.7.

Next, the setup was placed in more accurate ovens that provided better temperature
references. In each case, the entire apparatus was placed for a period of 16 minutes.
This was due to the uncertainty of the sensor’s reading within a minute. Once all

3.3 HEX Analysis 15



Fig. 3.7: Experimental Setup and bitmasking results of Temperature Calibration.

previous short term memory had been overwritten, the average of these results along
with the average of the meter reading was used to create a calibration line to find
the slope and intercept5.

Fig. 3.8: Detailed calibration of temperature values.

Figure 3.8 shows how the raw sensor values were related to measured temperature
values from the meter. Once the bitmask was applied, the linear relationship was
evident.

5The meaning of flags were not ascertained due to time constraints and limited testing conditions,
and was left for future work.

16 Chapter 3 Development



3.4 Application Development

The next step involved developing an Android application using the information
found through reverse-engineering the NfcV protocol. The standard Java stack for
Android was used, and the resulting application can be seen in Figure 3.9.

Fig. 3.9: Android application for reading sensor raw values.

Some optimizations were made to increase read times beyond state-of-the-art smart-
phone apps. From a preliminary study, current solutions were unable to get sensor
scan times less than 1.5 seconds. This was found to be due to the large memory
of the NC chip in the sensor, and the slow read times of the protocol. Information
could only be read in packets of eight bytes - scanning the entire chip took over five
seconds, and reading valid program memory took over a second.

Reverse engineering the Glimp app (which provided no source code) allowed for
decrypting the sensor tag label from the metadata provided by the sensor. The
full algorithm is shown in Figure 3.10. The Libre sensor uses a reduced set of
alphanumeric characters and some form of compression to encode the sensor label
that is printed on the side of each device.

Using this data, it was possible to match previously read values to the values being
presently read, and to stop when a previously known value was encountered. This
greatly reduced read times by removing the need to read the entire memory, or
even the entire array of values. For a subsequent read of the same sensor within 60
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Fig. 3.10: Algorithm used to decrypt sensor tag information.

seconds, the total read time was less than 50 ms, which only included the time it took
to read one short term value and one long term to confirm. On average, read times
were decreased to less than 500 ms, which provided a significant advantage over
existing apps and systems. The only known faster scanning system is the physical
reader provided by Abbott, making this a competitive option due to low cost and
greater accessibility.

3.5 Reverse Engineering the Reader

The goal is to get the app to be more accurate to BGM readings, with the Freestyle
Libre providing the current gold standard. Our app provides raw sensor data, while
BGM readings are straightforward to collect and record. However, we were also
hopeful that the Freestyle Libre reader would be able to provide more data. There
had already been significant work towards this. Xavier Claessens reverse engineered
many of the previous Abbott devices[Cla18]. However, most of the prior work
reverse engineering the Freestyle Libre was done by Diego Elio Pettenò. He details
the reverse engineering journey online[Pet16] and published the finished product
GitHub[Pet17]. However, this still does not deliver all the wanted data, so needed
further adaption.

The Freestyle Libre is charged by USB and further acts as a USB HID, or Human
Interface Device, class. This means it can be queried through libusb for information
packets, as when connected to the Abbott software. Mostly through trial and error,
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the community found two particularly useful commands for data collection. All
manual readings - reader spotchecks, blood fingerprick results for glucose and
ketones, alongside any associated flags and other information - are returned by the
$arresult command. Interestingly, a historical dataset of values fifteen minutes apart
can also be gained, with the $history command. These correspond to the fifteen
minute values stored and returned by the sensor.

Unfortunately, the returned data is heavily obfuscated. It comes in 64-bit packets of
hexadecimal dump with a significant amount of noise and no hints of how to identify
specific information within the data. Luckily, the necessary parts had already been
identified within the community. The code necessary to query the raw data from the
reader and map most of the important parts was publicly available[Pet17].

In order to end up with the desired data, the device must be queried appropri-
ately, then the returned data must be unobfuscated, separated into instances, and
processed. Most of this could be done through the glucometer-utils python code
available on GitHub, but needed to be extended to include more information and
return in a different format. This was achieved by updating the mapping of the
unobfuscated data for each instance, to include date, time, value, sensor runtime,
arrow, flags, error and reading type information, where applicable. Processing of
time and value was changed, and the formatting was adapted to include the new
data in preferred format. This was then easily exported to csv format.
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4Analysis

With this data, we were able to further investigate accuracy and general glucose
analysis. As previously mentioned, capillary blood glucose is considered the clinical
gold standard for most treatment. While our app provided a quick, easily accessible
way to read the sensor, the returned values were not a perfect fit for either simulta-
neous BGM readings or the Freestyle Libre reader, which processes the raw values
for greater accuracy. We hoped that, with further analysis, we would be able to
improve on this accuracy.

The reverse engineering mentioned above provided four datasets in total. The blood
glucose readings individually added from fingerpricks, the raw sensor values from
our app, the manual readings reported by the reader, and the extracted dataset
contained in the reader memory.

4.1 Data Comparison

The processed data1 - provided by $history - is distinctly different from the raw data,
as shown by Figure ??. It is also (excluding the separate manual dataset) evenly
spaced 15 minutes apart. This suggests that the processed data is a transformed
version of the 15 minute raw datasets. The data displayed on demand with each
scan is intended to estimate the current blood glucose level - let’s call this read-time
data (alternatively manual data, since it is affected by the manual scanning of the
sensor). Interestingly, these manually pulled values heavily deviate from the other
processed data, as seen in Figure 4.1.

The most obvious reason for this would be an attempt to make up for the time lag
between interstitial fluid and blood glucose. On the other hand, this is probably
taken into account with all the processed data, which Figure ?? would appear to
support. Another option is that the difference is due to the calculation method. The
majority of the processed data may be calculated solely off the sensor-provided 15
minute data, even if higher definition data is available, while the read-time value
incorporates the 30 minutes of dense data into the calculation. The latter theory

1referring to the 15-minute data collected from the reader, and raw data likewise refers to data
directly extracted from the sensor.
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suggests that the read-time values should be more accurate than the rest of the
processed data.

Fig. 4.1: Graph of read-time reader data.

We lacked the data to do a proper accuracy evaluation, and many papers have
already done so.

When it comes to accuracy, the Freestyle Libre consistently underperforms BGMs, but
not to a debilitating extent. However, in some studies it has been found to fall short of
common specifications - Fokket et al. found only 85.5% of results fell within Zone A of
the Clarke Error Grid, which has a generally accepted requirement of 95%. Over use,
we found that the average difference between almost simultaneous BGM and reader
readouts was comparable to the average difference between two semi-simultaneous
readings taken with the same BGM, as shown in Figure 4.2. The exception to this
were three troubling outliers, where the Libre read significantly under (5-8mmol/L)
the BGM ground truth. This is a noticeable trend - the CGM routinely underestimates
the BGM glucose reading, especially during hypoglycemia.

Figure 4.3 shows the distribution of the differences between the BGM reading and
another simultaneous reading from either the same BGM or the CGM. The CGM
clearly does not perform as well as the BGM, although this is significantly improved
if the outliers are removed from consideration. Given the 15 minute delay due
to intravenous fluid, this is understandable. If anything, it’s surprising how much
variation there was between two semi-simultaneous readings on the exact same
meter.

These findings held true when comparing the limited blood glucose (fingerprick
ground truth) readings against the available time data, as in Figure 4.4. The Freestyle
Libre was usually reasonably accurate to the BGM measurement, even when glucose
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Fig. 4.2: Comparison of the correlation between the Freestyle Libre and a BGM measure-
ment with a simultaneous BGM ground truth.

was changing quickly. The processed reader values were more accurate than the raw
values, as expected. Where applicable, the manual readings were usually a bit closer
still. As previously mentioned, it sometimes wildly underestimated particularly high
blood glucose reading, so it is possible that these points of apparent mismatch may
be user error, with the BGM reading incorrectly high due to sugar on the fingers or
the needle, for instance. Of course, there isn’t enough data to form a true conclusion
either way.

4.2 Prediction

One of the major additional features that a CGM brings is an element of prediction
through data analysis. Improving accuracy of this is very helpful. As previously
explained, Freestyle Libre communicates predictions with arrows (see Figure 2.1),
which translate to the direction glucose is currently trending in mmol/L per minute.
First, the accuracy of this needed to be evaluated. The majority of the data we
had came in fifteen minute intervals, but it was simple arithmetic to translate the
arrow meaning into mmol/L per 15 minute. Matching the time of each manual
scan (and hence arrow) to the closest 15 minute change in processed data, an
acceptable ground truth, allowed me to get the accuracy of the Freestyle Libre
arrows. Depending on the time frame, this varied around 63% +-5. This seemed
fairly low, so effort was made to improve on it using both least squares linear
regression and neural networks.
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Fig. 4.3: Gaussian distributions of the difference between simultaneous BGM readings and
simultaneous BGM and Libre readings.

Fig. 4.4: Multiple graphs comparing blood glucose data with CGM.

4.2.1 Linear Regression

The initial attempt at linear regression was at seeing whether curve fitting data
could be extended to predict future values. As Figure 4.5 shows, this was predictably
unsuccessful. Extending the curve quickly got out of hand, with even the first values
being very poorly fit.
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Fig. 4.5: Linear Regression results.

Next, I tried predicting the change in value based on the past 20 datapoints. This
initially seemed far more successful than the prior attempt, and even than the reader
itself, as shown in Figure 4.6. The accuracy was taken from testing with separate
data, not the training set. While there was some fluctuation depending on the
training/test sets chosen, it was consistently above 70%. Attempting to improve
on this - to predict over an hour, to take derivative values as input, to add prior
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- made little improvement, or caused a backtrack. Nevertheless, it seemed pretty
successful.

Fig. 4.6: Linear Regression results on prediction.

4.2.2 Neural Networks

The next attempt at improving on the prediction arrow was a basic neural network,
which I expected to be quite successful. However, it would always immediately go
to 78% accuracy and refuse to move through epochs or re-runs, as in Figure 4.7.
It fluctuated somewhat depending on the testing data, but it was generally settled.
This behaviour seemed strange, so I looked further into it.

Fig. 4.7: Training error against epoch for neural network.

As it turned out, the problem was that the data was generally too easy to predict.
Averaging 3

4 of it was going straight. This meant the neural network was just
persistently returning straight, getting it right most of the time, and not changing. In
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fact, looking back at the linear regression, it suffered the same fault. As Figure 4.8
shows, the ground truth for the change in value varied between -4 and 4, albeit
heavily clustered around zero. The prediction, on the other hand, remains tightly
between -1 and 1. This means it still captures most of the data accurately, but ignores
two thirds of the possible range.

Fig. 4.8: Correlation data for prediction.

4.2.3 Reader Prediction Arrow

The reader’s glucose trend arrow had a poorer mathematical accuracy than either of
my algorithms, while displaying the full range of directions instead of just straight. To
better understand how this went, I broke down their correct and incorrect instances,
as shown in Figure 4.9. This shows the distribution of the correct matches, the
incorrect arrows, and the incorrectly represented ground truths across the trend
directions; the distribution of the differences between a displayed arrow and the
corresponding true direction, and a more detailed breakdown of the errors. These
numbers tell us a few things.
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Fig. 4.9: Trend arrow statistics.

First, while the reader is often inaccurate, it’s rarely completely incorrect. Almost
93% of the predictions is within one degree of the ground truth. Less than 2% is
further away than two degrees. On the other hand, that 2% is an extreme enough
difference to possibly cause harmful management decisions (eg: the difference
between 4.2 going straight down, and going straight up).

The reader exaggerates change. When the reader is correct, it displays a straight
arrow 77% of the time. When the reader is incorrect, it is much more likely to
be signalling a change in glucose, only showing straight 24% of the time. This
suggests that the reader algorithm is more responsive to changes in blood glucose
than steadiness, and is likely to over exaggerate change in blood glucose. This is in
direct contrast to my attempts, which actively conformed everything to ‘straight’, so
all the incorrect values were due to rapidly changing bloods being typed as ‘straight’
nonetheless.

On the other hand, the true gradient is more likely to be changing when the reader
is incorrect. When the reader was incorrect, the gradient was changing 44% of the
time. This is almost twice the amount when the reader was correct, 23%. The reader
is more likely to read incorrectly on a quickly changing value. Some of this might be
overestimating the rate of change, but the rest will be due to underestimating the
change. This is in contrast to the early statistics, which suggested that the reader
perpetually overestimated change.

With the incorrect readings, the distribution of the true gradient was slightly skewed
down. The given arrow value was slightly skewed up. This suggests the reader is
more likely to incorrectly predict a higher gradient.

Of the errors that occur while the true value is straight, the uncertainty is very
equally distributed between over and underestimating. This suggests a lack of bias.
Similarly, the reader has only pointed in completely the wrong direction once.
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When true trend is going down, 60% of the reader’s incorrect predictions go straight.
Only 30% of the time will an incorrect arrow get the direction, at least, correct. In
contrast, if the true trend is up, an incorrect prediction is 60% likely to be in the
right direction, just with the wrong severity. The suggests that the reader arrow
exaggerates upwards trends and downplays downwards trends.

The reader’s glucose trend arrow has avoided the trap of only ever predicting straight,
while maintaining decent accuracy ratings. It appears to do this by magnifying any
change there is in the trend, often resulting in incorrectly predicting more change
than there is. This could be due to technical issues preventing greater accuracy. On
the other hand, it is most likely due to the arrow’s purpose as a clinical treatment aid,
not a mathematical instrument. Abbott’s internal research may suggest that better
treatment decisions are made when glucose rate of change is made more obvious.

4.2.4 Clinical Analysis

Improving the precision and accuracy of these sensors is useful, as a tool to improve
monitoring. However, that tool must then be put to use. While the sensors are
currently prolific within the diabetic community, they have strong potential for appli-
cation elsewhere. The sensors are very useful in understanding internal response to
glucose. This has a range of possible uses; improving diet, calculating biological age,
preventing glucose lows (including in non-diabetics) and controlling ‘food comas’.
Poor glucose response is indicative of a higher biological age, increases risk of dia-
betes and cardiovascular disease, and may decrease height [Wil+91][Law+04]. On
the other hand, an overactive glucose response can lead to hypoglycemia.

The current state-of-the-art testing for glucose response is limited to the straightfor-
ward glucose tolerance test. This comprises of taking a blood glucose test (BGM) to
establish baseline, consuming a 1L soft drink, then taking a second blood glucose
test (BGM) two hours later. The difference between the two measurements indicates
glucose tolerance. If the second test is above baseline, they are considered to have
an impaired glucose response. Needless to say, this is a fairly low definition test.
CGM monitoring can give a closer look at what the typical test might miss for better
diagnosis, while also giving an opportunity to further explore how glucose response
relates of other biological factors. As well as giving greater information on overall
health and age, a better resolution analysis of glucose levels can give more insight
into diet, hyperglycemia (food comas), and hypoglycemia (dizziness, fainting spells,
nausea).

Our testing, while far from extensive, did give some insight into the glucose response
of three people - 19yo female diabetic, 23yo male non-diabetic, and 42yo male
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Fig. 4.10: Glucose Tolerance Test comparison.

non-diabetic. Figure 4.10 shows the aftermath of a glucose tolerance test (note,
the diabetic’s serving size was lowered to avoid health concerns). It’s clear that the
younger male has a quicker insulin response to the sugar, peaking at 7.6 mmol/L
just 1hr 20 mins after consumption. The older male peaks 15min later at 1hr 35
mins, with a high of 9.5 mmol/L. The post-peak decline is particularly interesting.
Although the 42yo peaked later, his glucose response actively turned his blood
glucose around and actually pushed him into hypoglycemia for an hour before
correcting. The 23yo’s reaction, on the other hand, kicked in earlier and leveled out
the high. This is apparent from the first derivative (Figure 4.11), which shows the
23yo’s blood glucose rate of change dropping off sharply. However, although it then
decreases somewhat, the drop is comparatively restrained. Interestingly, despite the
lack of hypoglycemia, there still appears to be a corrective response.

In contrast, the diabetic does not appear to have any counter-reaction to the sugar.
Her blood glucose continues to rise to 15mmol/L, when it appears to have run
through the sugar over two hours past consumption. It then plateaus, although
appears to decrease over time. This is understandable, since a diabetic has limited
to zero internal glucose regulation, and instead has to rely on insulin (typically
both short-term and long-term) to manage levels. Continuous monitoring can also
provide an interesting insight into the effectiveness of this management.

Figure 4.12 shows revealing CGM data from different insulin combinations in the
course of everyday life. The appropriateness of long-term insulin, in particular,
becomes readily apparent from CGM data, which show whether blood glucose
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Fig. 4.11: First derivative of the glucose responses (from fitted sixth degree polynomial).

Fig. 4.12: Comparison of the effects of different insulin treatments post-food in everyday
life.

decreases over time without further action, increases, or stays steady as desired.
This level of understanding is very difficult to gain from the discrete and limited
nature of BGM data, especially as temporary interference (from food, short-term
insulin, exercise, etc) can confound any of the few spotchecks. The CGM data is very
easy to interpret on this front. This also provides better monitoring of short-term
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insulin. In Figure 4.12, this is given away by the steep post-peak curve. However,
it’s surprising how long it took to take noticeable effect - three hours, on the inside.
This may, however, be more indicative of eating patterns (spending hours nibbling
over dinner instead of rushing it down) than issues with the insulin. This would be
an interesting point to further research.
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5Appendix

All source code and data are located at the primary repo for this paper - https:
//github.com/hrishioa/Juventas

5.1 Source Code Organization

Primary organization of the source code is split into three folders: Code, Data and
Paper. The Code folder contains all of the applications and utilities written and used
for the paper, the Data folder contains raw data read from multiple versions of the
Libre app, along with Liapp and Glimp. The Paper folder, understandably contains
the tex files used to generate this paper as a form of paperception.

Below are the utilities and scripts included in the Code folder:

• BGMLogger is a handy script for manually logging blood glucose and tagging
information, and produces an output to csv. Usage: python BGMLogger.py
<filename - default is BGMlog.csv>

• apk-reverse-engineer contains all of the files used in the reverse engineering
process of the Glimp and Liapp applications. Here the binaries of dex2jar and
apktool are included for repeatability, as well as extracted source code and
recompiled binaries. Tread at your own risk.

• glucometerutils is a fork of [Pet18], with some modifications added to make
logging to csv easier for proper debugging. Some fixes were made to improve
performance with the Freestyle Libre, and some locks were removed to improve
debugging verbosity1.

• Juventus App is the Android developed as part of the paper. It is functioning
as of the time of writing, and the repository contains the gradle files needed
to import and compile in Android Studio, as well as a pre-built apk that will
work on Android Versions 17 and up.

1Please check https://github.com/flameeyes/glucometerutils for dependencies and usage
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• Misc Utilities contains processing scripts, and may therefore be more cluttered
than the rest. The contents are -

1. glimp_process.py can be used to fix unicode errors and patch missing
data from the output of glucometerutils. Usage: python glimp_process.py
<input_file> <output_file>

2. processNFCcsv.py parses the csv hex dumps from the Android app (dis-
abled by default for performance) to compute glucose and temperature
information for testing. The color added console output seen in Figure 3.5
is also produced by this script. The input filename is stored in the script
and will need to be modified.

3. processrawNFC.py is very helpful is extracting information directly from
the sensor, and therefore is more versatile when used on different sensor.
The input is a xml hex dump from NXP TagInfo, which is freely available
for Android smartphones. Bypassing any other application dedicated to
blood sugar also allows for independent algorithm confirmation. Same
as before, the input filename is stored in the script and will need to be
modified.

4. Graphing.ipynb is the Jupiter notebook containing raw glucose and
temperature plots as well as some sanitization functions for datasets.

• Data contains all of the raw data used in this experiment. Most common
organisation is as a csv, with self-explanatory headings.

5.1 Source Code Organization 33



Bibliography

[Abb] Abbott. Real-World Data from Abbott’s FreeStyle® Libre Show Association Between
Higher Frequency of Glucose Monitoring and Improved Glucose Control for People
with Diabetes (cit. on p. 4).

[Bau17] Victor Bautista. FreeStyleLibre-NFC-Reader: Read data from a FreeStyleLibre with
Android. original-date: 2014-11-14T11:28:51Z. Nov. 2017 (cit. on p. 13).

[Cla+87] William L. Clarke, Daniel Cox, Linda A. Gonder-Frederick, William Carter, and
Stephen L. Pohl. „Evaluating Clinical Accuracy of Systems for Self-Monitoring of
Blood Glucose“. en. In: Diabetes Care 10.5 (Sept. 1987), pp. 622–628 (cit. on
p. 2).

[Cla18] Xavier Claessens. OpenGlucose is an application for diabetics that reads data
from supported glucometer devices and display statistics and graphs. original-date:
2014-08-17T01:43:41Z. Jan. 2018 (cit. on p. 18).

[Ede13] David Edelman. Blood Glucose Meter Accuracy Comparison (Chart). July 2013
(cit. on p. 2).

[Hos+14] Udo Hoss, Erwin S. Budiman, Hanqing Liu, and Mark P. Christiansen. „Feasibility
of Factory Calibration for Subcutaneous Glucose Sensors in Subjects With Dia-
betes“. In: Journal of Diabetes Science and Technology 8.1 (Jan. 2014), pp. 89–94
(cit. on p. 8).

[Law+04] C. M. M. Lawes, V. Parag, D. A. Bennett, et al. „Blood glucose and risk of
cardiovascular disease in the Asia Pacific region“. eng. In: Diabetes Care 27.12
(Dec. 2004), pp. 2836–2842 (cit. on p. 28).

[Noaa] 16-bit 32-bit MCU | Low-power MCUs | Overview | Microcontrollers (MCU) |
TI.com (cit. on p. 11).

[Noab] Accuracy of a Flash Glucose Monitoring System in Diabetic Dogs (cit. on p. 9).

[Noac] Amperometric biosensors (cit. on p. 7).

[Noad] Are Blood Glucose Meters Accurate? New Data on 18 Meters. Aug. 2017 (cit. on
p. 2).

[Noae] Endianness. en. Page Version ID: 812521270. Nov. 2017 (cit. on p. 13).

[Noaf] FDA Publishes Final Recommendations on Blood Glucose Meter Accuracy. Oct. 2016
(cit. on p. 2).

34



[Noag] „How to Get Diabetics Addicted to Data“. In: Bloomberg.com (Mar. 2017) (cit. on
p. 10).

[Noah] ISO/IEC 15693. en. Page Version ID: 804776582. Oct. 2017 (cit. on p. 12).

[Noai] Mary Ann Liebert, Inc. - Home (cit. on p. 8).

[Noaj] Near-field communication. en. Page Version ID: 811370705. Nov. 2017 (cit. on
p. 11).

[Noak] NFC and ISO15693: Let’s be clear! - Global Tag Srl (cit. on p. 12).

[Noal] NfcV | Android Developers (cit. on p. 12).

[Noam] Nightscout – Javorek.eu (cit. on p. 4).

[Noan] Patents | Diabetes| Abbott U.S. (Cit. on p. 10).

[Noao] RF430FRL152H NFC ISO15693 Sensor Transponder With SPI/I2C Interface and
14-Bit Sigma-Delta ADC | TI.com (cit. on pp. 11, 12, 15).

[Noap] Sensor Technology | FreeStyle (cit. on p. 8).

[Noaq] „Thermocouple tape“. Pat. Jan. 1971 (cit. on p. 10).

[Noar] Type I Diabetes, Coeliac Disease, Tennis. (Cit. on p. 12).

[Pet16] Diego Elio Pettenò. Reverse engineering the FreeStyle Libre CGM, chapter 1. en-us.
Mar. 2016 (cit. on p. 18).

[Pet17] Diego Elio Pettenò. glucometer-protocols: A shared repository to provide a descrip-
tion of reverse-engineered glucometer protocols. original-date: 2016-02-09T00:36:31Z.
Dec. 2017 (cit. on pp. 15, 18, 19).

[Pet18] Diego Elio Pettenò. glucometerutils: Glucometer access utilities. original-date:
2013-08-03T08:08:52Z. Jan. 2018 (cit. on p. 32).

[Say+00] James Say, Michael F. Tomasco, Adam Heller, et al. „Electrochemical analyte“.
Pat. US6134461 A. U.S. Classification 600/345, 600/309; International Classi-
fication G01N27/327, A61B5/00, C12Q1/00, G01N33/487; Cooperative Clas-
sification C12Q1/001, A61B5/14865, C12Q1/006, A61B5/14542, A61B5/01,
A61B5/14546, A61B5/1486, A61B5/14735, A61B5/14532; European Classifica-
tion A61B5/145G, A61B5/1486B, G01N27/327B, C12Q1/00B, C12Q1/00B6B.
Oct. 2000 (cit. on p. 10).

[Sch] Gary Scheiner. 2016 Blood Glucose Meter Comparisons (cit. on p. 2).

[Sof17] CTAPP Software. Glimp. Oct. 2017 (cit. on pp. 12, 15).

[Ve] Pierre V and evenne. Libre Data Interpretation (continued - and probably final for
parameters) (cit. on p. 13).

[Wil+91] D R Williams, P M Clark, N E Day, et al. „Impaired glucose tolerance and height.“
In: BMJ : British Medical Journal 303.6810 (Nov. 1991), p. 1134 (cit. on p. 28).

[Ilk14] Ilka. Freestyle Libre - Blick ins Innere. Nov. 2014 (cit. on p. 11).

Bibliography 35


	Cover
	Abstract
	1 Background
	1.1 History
	1.2 Sensor Choice
	1.3 Freestyle Libre

	2 Technical Analysis
	2.1 Event Analysis and Review
	2.2 Sensor Chemistry
	2.2.1 Amperometric Glucose Biosensors


	3 Development
	3.1 Architecture
	3.2 Communication Protocol Analysis
	3.2.1 Related Work

	3.3 HEX Analysis
	3.4 Application Development
	3.5 Reverse Engineering the Reader

	4 Analysis
	4.1 Data Comparison
	4.2 Prediction
	4.2.1 Linear Regression
	4.2.2 Neural Networks
	4.2.3 Reader Prediction Arrow
	4.2.4 Clinical Analysis


	5 Appendix
	5.1 Source Code Organization

	Bibliography

